9,896 research outputs found

    All order covariant tubular expansion

    Full text link
    We consider tubular neighborhood of an arbitrary submanifold embedded in a (pseudo-)Riemannian manifold. This can be described by Fermi normal coordinates (FNC) satisfying certain conditions as described by Florides and Synge in \cite{FS}. By generalizing the work of Muller {\it et al} in \cite{muller} on Riemann normal coordinate expansion, we derive all order FNC expansion of vielbein in this neighborhood with closed form expressions for the curvature expansion coefficients. Our result is shown to be consistent with certain integral theorem for the metric proved in \cite{FS}.Comment: 27 pages. Corrected an error in a class of coefficients resulting from a typo. Integral theorem and all other results remain unchange

    The use of singular value gradients and optimization techniques to design robust controllers for multiloop systems

    Get PDF
    A method for designing robust feedback controllers for multiloop systems is presented. Robustness is characterized in terms of the minimum singular value of the system return difference matrix at the plant input. Analytical gradients of the singular values with respect to design variables in the controller are derived. A cumulative measure of the singular values and their gradients with respect to the design variables is used with a numerical optimization technique to increase the system's robustness. Both unconstrained and constrained optimization techniques are evaluated. Numerical results are presented for a two output drone flight control system

    Transition from radiatively inefficient to cooling dominated phase in two temperature accretion discs around black holes

    Full text link
    We investigate the transition of a radiatively inefficient phase of a viscous two temperature accreting flow to a cooling dominated phase and vice versa around black holes. Based on a global sub-Keplerian accretion disc model in steady state, including explicit cooling processes self-consistently, we show that general advective accretion flow passes through various phases during its infall towards a black hole. Bremsstrahlung, synchrotron and inverse Comptonization of soft photons are considered as possible cooling mechanisms. Hence the flow governs a much lower electron temperature ~10^8 - 10^{9.5}K compared to the hot protons of temperature ~10^{10.2} - 10^{11.8}K in the range of the accretion rate in Eddington units 0.01 - 100. Therefore, the solutions may potentially explain the hard X-rays and the gamma-rays emitted from AGNs and X-ray binaries. We finally compare the solutions for two different regimes of viscosity and conclude that a weakly viscous flow is expected to be cooling dominated compared to its highly viscous counterpart which is radiatively inefficient. The flow is successfully able to reproduce the observed luminosities of the under-fed AGNs and quasars (e.g. Sgr A*), ultra-luminous X-ray sources (e.g. SS433), as well as the highly luminous AGNs and ultra-luminous quasars (e.g. PKS 0743-67) at different combinations of the mass accretion rate and ratio of specific heats.Comment: 13 pages including 8 figures; couple of typos corrected; to appear in Research in Astronomy and Astrophysic
    corecore